Find the best degree polynomial approximation of f(x) sinh z C(-1,1J) with respect to ||z|-10| using online calculators. (2024)

`); let searchUrl = `/search/`; history.forEach((elem) => { prevsearch.find('#prevsearch-options').append(`

${elem}

`); }); } $('#search-pretype-options').empty(); $('#search-pretype-options').append(prevsearch); let prevbooks = $(false); [ {title:"Recently Opened Textbooks", books:previous_books}, {title:"Recommended Textbooks", books:recommended_books} ].forEach((book_segment) => { if (Array.isArray(book_segment.books) && book_segment.books.length>0 && nsegments<2) { nsegments+=1; prevbooks = $(`

  • ${book_segment.title}
  • `); let searchUrl = "/books/xxx/"; book_segment.books.forEach((elem) => { prevbooks.find('#prevbooks-options'+nsegments.toString()).append(`

    ${elem.title} ${ordinal(elem.edition)} ${elem.author}

    `); }); } $('#search-pretype-options').append(prevbooks); }); } function anon_pretype() { let prebooks = null; try { prebooks = JSON.parse(localStorage.getItem('PRETYPE_BOOKS_ANON')); }catch(e) {} if ('previous_books' in prebooks && 'recommended_books' in prebooks) { previous_books = prebooks.previous_books; recommended_books = prebooks.recommended_books; if (typeof PREVBOOKS !== 'undefined' && Array.isArray(PREVBOOKS)) { new_prevbooks = PREVBOOKS; previous_books.forEach(elem => { for (let i = 0; i < new_prevbooks.length; i++) { if (elem.id == new_prevbooks[i].id) { return; } } new_prevbooks.push(elem); }); new_prevbooks = new_prevbooks.slice(0,3); previous_books = new_prevbooks; } if (typeof RECBOOKS !== 'undefined' && Array.isArray(RECBOOKS)) { new_recbooks = RECBOOKS; for (let j = 0; j < new_recbooks.length; j++) { new_recbooks[j].viewed_at = new Date(); } let insert = true; for (let i=0; i < recommended_books.length; i++){ for (let j = 0; j < new_recbooks.length; j++) { if (recommended_books[i].id == new_recbooks[j].id) { insert = false; } } if (insert){ new_recbooks.push(recommended_books[i]); } } new_recbooks.sort((a,b)=>{ adate = new Date(2000, 0, 1); bdate = new Date(2000, 0, 1); if ('viewed_at' in a) {adate = new Date(a.viewed_at);} if ('viewed_at' in b) {bdate = new Date(b.viewed_at);} // 100000000: instead of just erasing the suggestions from previous week, // we just move them to the back of the queue acurweek = ((new Date()).getDate()-adate.getDate()>7)?0:100000000; bcurweek = ((new Date()).getDate()-bdate.getDate()>7)?0:100000000; aviews = 0; bviews = 0; if ('views' in a) {aviews = acurweek+a.views;} if ('views' in b) {bviews = bcurweek+b.views;} return bviews - aviews; }); new_recbooks = new_recbooks.slice(0,3); recommended_books = new_recbooks; } localStorage.setItem('PRETYPE_BOOKS_ANON', JSON.stringify({ previous_books: previous_books, recommended_books: recommended_books })); build_popup(); } } var whiletyping_search_object = null; var whiletyping_search = { books: [], curriculum: [], topics: [] } var single_whiletyping_ajax_promise = null; var whiletyping_database_initial_burst = 0; //number of consecutive calls, after 3 we start the 1 per 5 min calls function get_whiletyping_database() { //gets the database from the server. // 1. by validating against a local database value we confirm that the framework is working and // reduce the ammount of continuous calls produced by errors to 1 per 5 minutes. return localforage.getItem('whiletyping_last_attempt').then(function(value) { if ( value==null || (new Date()) - (new Date(value)) > 1000*60*5 || (whiletyping_database_initial_burst < 3) ) { localforage.setItem('whiletyping_last_attempt', (new Date()).getTime()); // 2. Make an ajax call to the server and get the search database. let databaseUrl = `/search/whiletype_database/`; let resp = single_whiletyping_ajax_promise; if (resp === null) { whiletyping_database_initial_burst = whiletyping_database_initial_burst + 1; single_whiletyping_ajax_promise = resp = new Promise((resolve, reject) => { $.ajax({ url: databaseUrl, type: 'POST', data:{csrfmiddlewaretoken: "5qwp95fTdA5qZpDcLwNcO1YwtoINEBWWyn5TZ6JAs5og6GB8zo26e51wQVKhRbNs"}, success: function (data) { // 3. verify that the elements of the database exist and are arrays if ( ('books' in data) && ('curriculum' in data) && ('topics' in data) && Array.isArray(data.books) && Array.isArray(data.curriculum) && Array.isArray(data.topics)) { localforage.setItem('whiletyping_last_success', (new Date()).getTime()); localforage.setItem('whiletyping_database', data); resolve(data); } }, error: function (error) { console.log(error); resolve(null); }, complete: function (data) { single_whiletyping_ajax_promise = null; } }) }); } return resp; } return Promise.resolve(null); }).catch(function(err) { console.log(err); return Promise.resolve(null); }); } function get_whiletyping_search_object() { // gets the fuse objects that will be in charge of the search if (whiletyping_search_object){ return Promise.resolve(whiletyping_search_object); } database_promise = localforage.getItem('whiletyping_database').then(function(database) { return localforage.getItem('whiletyping_last_success').then(function(last_success) { if (database==null || (new Date()) - (new Date(last_success)) > 1000*60*60*24*30 || (new Date('2023-04-25T00:00:00')) - (new Date(last_success)) > 0) { // New database update return get_whiletyping_database().then(function(new_database) { if (new_database) { database = new_database; } return database; }); } else { return Promise.resolve(database); } }); }); return database_promise.then(function(database) { if (database) { const options = { isCaseSensitive: false, includeScore: true, shouldSort: true, // includeMatches: false, // findAllMatches: false, // minMatchCharLength: 1, // location: 0, threshold: 0.2, // distance: 100, // useExtendedSearch: false, ignoreLocation: true, // ignoreFieldNorm: false, // fieldNormWeight: 1, keys: [ "title" ] }; let curriculum_index={}; let topics_index={}; database.curriculum.forEach(c => curriculum_index[c.id]=c); database.topics.forEach(t => topics_index[t.id]=t); for (j=0; j

    Solutions
  • Textbooks
  • `); } function build_solutions() { if (Array.isArray(solution_search_result)) { const viewAllHTML = userSubscribed ? `View All` : ''; var solutions_section = $(`
  • Solutions ${viewAllHTML}
  • `); let questionUrl = "/questions/xxx/"; let askUrl = "/ask/question/xxx/"; solution_search_result.forEach((elem) => { let url = ('course' in elem)?askUrl:questionUrl; let solution_type = ('course' in elem)?'ask':'question'; let subtitle = ('course' in elem)?(elem.course??""):(elem.book ?? "")+"    "+(elem.chapter?"Chapter "+elem.chapter:""); solutions_section.find('#whiletyping-solutions').append(` ${elem.text} ${subtitle} `); }); $('#search-solution-options').empty(); if (Array.isArray(solution_search_result) && solution_search_result.length>0){ $('#search-solution-options').append(solutions_section); } MathJax.typesetPromise([document.getElementById('search-solution-options')]); } } function build_textbooks() { $('#search-pretype-options').empty(); $('#search-pretype-options').append($('#search-solution-options').html()); if (Array.isArray(textbook_search_result)) { var books_section = $(`
  • Textbooks View All
  • `); let searchUrl = "/books/xxx/"; textbook_search_result.forEach((elem) => { books_section.find('#whiletyping-books').append(` ${elem.title} ${ordinal(elem.edition)} ${elem.author} `); }); } if (Array.isArray(textbook_search_result) && textbook_search_result.length>0){ $('#search-pretype-options').append(books_section); } } function build_popup(first_time = false) { if ($('#search-text').val()=='') { build_pretype(); } else { solution_and_textbook_search(); } } var search_text_out = true; var search_popup_out = true; const is_login = false; const user_hash = null; function pretype_setup() { $('#search-text').focusin(function() { $('#search-popup').addClass('show'); resize_popup(); search_text_out = false; }); $( window ).resize(function() { resize_popup(); }); $('#search-text').focusout(() => { search_text_out = true; if (search_text_out && search_popup_out) { $('#search-popup').removeClass('show'); } }); $('#search-popup').mouseenter(() => { search_popup_out = false; }); $('#search-popup').mouseleave(() => { search_popup_out = true; if (search_text_out && search_popup_out) { $('#search-popup').removeClass('show'); } }); $('#search-text').on("keyup", delay(() => { build_popup(); }, 200)); build_popup(true); let prevbookUrl = `/search/pretype_books/`; let prebooks = null; try { prebooks = JSON.parse(localStorage.getItem('PRETYPE_BOOKS_'+(is_login?user_hash:'ANON'))); }catch(e) {} if (prebooks && 'previous_books' in prebooks && 'recommended_books' in prebooks) { if (is_login) { previous_books = prebooks.previous_books; recommended_books = prebooks.recommended_books; if (prebooks.time && new Date().getTime()-prebooks.time<1000*60*60*6) { build_popup(); return; } } else { anon_pretype(); return; } } $.ajax({ url: prevbookUrl, method: 'POST', data:{csrfmiddlewaretoken: "5qwp95fTdA5qZpDcLwNcO1YwtoINEBWWyn5TZ6JAs5og6GB8zo26e51wQVKhRbNs"}, success: function(response){ previous_books = response.previous_books; recommended_books = response.recommended_books; if (is_login) { localStorage.setItem('PRETYPE_BOOKS_'+user_hash, JSON.stringify({ previous_books: previous_books, recommended_books: recommended_books, time: new Date().getTime() })); } build_popup(); }, error: function(response){ console.log(response); } }); } $( document ).ready(pretype_setup); $( document ).ready(function(){ $('#search-popup').on('click', '.search-view-item', function(e) { e.preventDefault(); let autoCompleteSearchViewUrl = `/search/autocomplete_search_view/`; let objectUrl = $(this).attr('href'); let selectedId = $(this).data('objid'); let searchResults = []; $("#whiletyping-solutions").find("a").each(function() { let is_selected = selectedId === $(this).data('objid'); searchResults.push({ objectId: $(this).data('objid'), contentType: $(this).data('contenttype'), category: $(this).data('category'), selected: is_selected }); }); $("#whiletyping-books").find("a").each(function() { let is_selected = selectedId === $(this).data('objid'); searchResults.push({ objectId: $(this).data('objid'), contentType: $(this).data('contenttype'), category: $(this).data('category'), selected: is_selected }); }); $.ajax({ url: autoCompleteSearchViewUrl, method: 'POST', data:{ csrfmiddlewaretoken: "5qwp95fTdA5qZpDcLwNcO1YwtoINEBWWyn5TZ6JAs5og6GB8zo26e51wQVKhRbNs", query: $('#search-text').val(), searchObjects: JSON.stringify(searchResults) }, dataType: 'json', complete: function(data){ window.location.href = objectUrl; } }); }); });
    Find the best degree polynomial approximation of f(x) sinh z C(-1,1J) with respect to ||z|-10| using online calculators. (2024)

    FAQs

    How do you find the best degree of a polynomial? ›

    In order to find the degree, check each term of the given polynomial. All are unlike terms with x as a variable. Arrange these terms in descending order of their powers, which gives x7 - 7x5 + 5x4+ 3x2. The term with the greatest or highest exponent is x7.

    How to find degree and leading coefficient? ›

    Identify the exponents on the variables in each term, and add them together to find the degree of each term. The largest exponent is the degree of the polynomial. The leading term in a polynomial is the term with the highest degree. The leading coefficient of a polynomial is the coefficient of the leading term.

    What is the leading coefficient of the equation? ›

    Leading coefficients are the numbers written in front of the variable with the largest exponent. Just like regular coefficients, they can be positive, negative, real, or imaginary as well as whole numbers, fractions or decimals. For example, in the equation -7x^4 + 2x^3 - 11, the highest exponent is 4.

    How to find the leading term of a function? ›

    In a polynomial, the leading term is the term with the highest power of x. For example, the leading term of 7+x−3x2 is −3x2. The leading coefficient of a polynomial is the coefficient of the leading term. In the above example, the leading coefficient is −3.

    How to find degree polynomial? ›

    Correct answer:

    To find the degree of a polynomial, simply find the highest exponent in the expression. As seven is the highest exponent above, it is also the degree of the polynomial.

    What is the greatest degree of a polynomial? ›

    A polynomial's degree is the highest or the greatest power of a variable in a polynomial equation. The degree indicates the highest exponential power in the polynomial (ignoring the coefficients).

    How do you find the degree and number of terms of each polynomial? ›

    The Degree of a Polynomial is the largest of the degrees of the individual terms. Add the degrees of the variables of each term to decide what is the Degree of the Polynomial. Degree of term 1 is 2 (1+1= 2), Degree of term 2 is 6 (2+4 = 6), Degree of term 3 is 7 (5+2 = 7) 7 is the Degree of the Polynomial.

    How do you use the leading coefficient and degree of the polynomial function to determine the end behavior? ›

    If the coefficient is negative, now the end behavior on both sides will be -∞. If the polynomials degree is odd, then the end behavior will be different on both sides. If the leading coefficient is positive then the end behavior will be -∞ as x approaches -∞ and ∞ as x approaches ∞.

    How do you find the possibility for the degree of the function? ›

    Given a graph of a polynomial we use the peaks and valleys of the graph to determine the degree of a function. Anytime a graph switches from increasing to decreasing that is considered a peak.

    How to find the coefficient of a polynomial? ›

    The coefficient is the numerical factor in front of the variables in each term. For the polynomial 2 x 5 y 2 − 3 x y 2 − 7 2 {x^5}{y^2} - 3x{y^2} - 7 2x5y2−3xy2−7, the coefficients are: 2 for the term 2 x 5 y 2 2x^5y^2 2x5y2. -3 for the term − 3 x y 2 -3xy^2 −3xy2.

    How do you factor polynomials step by step? ›

    Step 1: Group the first two terms together and then the last two terms together. Step 2: Factor out a GCF from each separate binomial. Step 3: Factor out the common binomial. Note that if we multiply our answer out, we do get the original polynomial.

    How to find the degree of a binomial? ›

    We can also recall that the degree of a monomial is the sum of the powers of all of its variables. Therefore, the degree of a binomial, or any polynomial, is the largest sum of the powers of the variables in a term.

    How to find the degree and leading coefficient of a polynomial? ›

    We can find the degree of a polynomial by identifying the highest power of the variable that occurs in the polynomial. The term with the highest degree is called the leading term because it is usually written first. The coefficient of the leading term is called the leading coefficient.

    How to find the zeros of a polynomial? ›

    The zeros of a polynomial can be easily found graphically by locating the points where the graph of the polynomial expression cuts the x-axis. For all the points where the equation line cuts the x-axis, the x coordinate of the point represents the zeros of the polynomial.

    How to classify a polynomial? ›

    Based on the terms in a polynomial, it can be classified into the following 3 types: monomial, binomial, trinomial. Based on the degree of a polynomial, it can be classified into 4 types: zero polynomial, linear polynomial, quadratic polynomial, cubic polynomial.

    How do you find the highest degree of a polynomial that can be generated? ›

    All coefficients a,b,c,d,e, …, constant are real numbers and a not = 0. Then, highest degree of this polynomial = n. Otherwise, starting from the left, highest degree = power (exponent) of first NON-ZERO coefficient of x term. If a = 0 and b not = 0, then degree = n-1.

    How is the degree of a polynomial function determined? ›

    The degree of a polynomial is the highest power of x in its expression. Constant (non-zero) polynomials, linear polynomials, quadratics, cubics and quartics are polynomials of degree 0, 1, 2 , 3 and 4 respectively. The function f(x)=0 is also a polynomial, but we say that its degree is 'undefined'.

    How do you find the product of the highest degree of a polynomial? ›

    The degree of the product of a polynomial and a non-zero real number is the degree of the polynomial itself. For example, the degree of the product of a (some non-zero real number) and x3+x2+1 is 3. Because a⋅(x3+x2+1)=ax3+ax2+a. The highest degree of this polynomial is equal to the biggest exponent, which is 3.

    Top Articles
    Latest Posts
    Article information

    Author: Kieth Sipes

    Last Updated:

    Views: 6559

    Rating: 4.7 / 5 (67 voted)

    Reviews: 90% of readers found this page helpful

    Author information

    Name: Kieth Sipes

    Birthday: 2001-04-14

    Address: Suite 492 62479 Champlin Loop, South Catrice, MS 57271

    Phone: +9663362133320

    Job: District Sales Analyst

    Hobby: Digital arts, Dance, Ghost hunting, Worldbuilding, Kayaking, Table tennis, 3D printing

    Introduction: My name is Kieth Sipes, I am a zany, rich, courageous, powerful, faithful, jolly, excited person who loves writing and wants to share my knowledge and understanding with you.